
GRAPHICS GEMS
IV

Edited by Paul S. Heckbert
Computer Science Department

Carnegie Mellon University
Pittsburgh, Pennsylvania

AP PROFESSIONAL
Boston San Diego New York

London Sydney Tokyo Toronto

This book is printed on acid-ftee paper. ©

Copyright © 1994 by Academic Press, Inc.
All rights reserved
No part of this publication may be reproduced or
transmitted in any form or by any means, electronic
or mechanical, including photocopy, recording, or
any information storage and retrieval system, without
permission in writing from the publisher.

AP PROFESSIONAL
1300 Boylston Street, Chestnut Hill, MA 02167

An Imprint of ACADEMIC PRESS, INC.
A Division of HARCOURT BRACE & COMPANY

United Kingdom Edition published by
ACADEMIC PRESS LIMITED
24-28 Oval Road, London NWl 7DX

Library of Congress Cataloging-in-Publication Data
Graphic gems IV / edited by Paul S. Heckbert

p. cm. — (The Graphic gems series)
Includes bibliographical references and index
ISBN 0-12-336156-7 (with Macintosh disk). — ISBN 0-12-336155-9

(with IBM disk)
1. Computer graphics. I. Heckbert, Paul S., 1958-

II. Title: Graphics gems 4. III. Title: Graphic gems four
IV. Series.
T385.G6974 1994
006.6’6—dc20 93-46995

CIP

Printed in the United States of America

95 96 97 MV 9 8 7 6 5 4 3 2

OVIII.5
Contrast Limited Adaptive
Histogram Equalization

Karel Zuiderveld
Computer Vision Research Group
Utrecht University
Utrecht, The Netheriands
karei@cv.ruu.nl

This Gem describes a contrast enhancement technique called adaptive histogram equal­
ization, AHE for short, and an improved version of AHE, named contrast limited adap­
tive histogram equalization, CLAHE, that both overcome the limitations of standard
histogram equalization. CLAHE was originally developed for medical imaging and
has proven to be successful for enhancement of low-contrast images such as portal
films (Rosenman et al. 1993).

0 Introduction <>
Probably the most used image processing function is contrast enhancement with a
lookup table, a 1-to-l pixel transform as described in (Jain 1989). When an image has
poor contrast, the use of an appropriate mapping function (usually a linear ramp) often
results in an improved image.

The mapping function can also be non-linear; a well-known example is gamma cor­
rection. Another non-linear technique is histogram equalization; it is based on the as­
sumption that a good gray-level assignment scheme should depend on the frequency
distribution (histogram) of image gray levels. As the number of pixels in a certain class
of gray levels increases, one likes to assign a larger part of the available output gray
ranges to the corresponding pixels. This condition is met when cumulative histograms
are used as a gray-level transform as is shown in Figure 1.

The histogram of the resulting image is approximately flat, which suggests an optimal
distribution of the gray values. However, Figure 1 shows that histogram equalization in
its basic form can give a result that is worse than the original image. Large peaks in
the histogram can also be caused by uninteresting areas (especially background noise);
in this case, histogram equalization mainly leads to an improved visibility of image
noise. The technique does also not adapt to local contrast requirements; minor contrast
differences can be entirely missed when the number of pixels falling in a particular gray
range is small.
Copyright (c) 1994 by Academic Press, Inc.
All rights of reproduction in any form reserved.
IBM ISBN 0-12-336155-9
Macintosh ISBN 0-12-336156-7 4 74

mailto:karei@cv.ruu.nl

VI11.5 Contrast Limited Adaptive Histogram Equalization 0 475

Figure 1. Example of contrast enhancement using histogram equalization, (a) The original image, an
image of a human knee obtained with Magnetic Resonance Imaging, (b) Result of histogram equalization.

0 Adaptive Histogram Equalization (AHE) 0
Since our eyes adapt to the local context of images to evaluate their contents, it makes
sense to optimize local image contrast (Pizer et al. 1987). To accomplish this, the image
is divided in a grid of rectangular contextual regions in which the optimal contrast must
be calculated. The optimal number of contextual regions depends on the type of input
image, and its determination requires some experimentation. Division of the image into
8x8 contextual regions usually gives good results; this implies 64 contextual regions
of size 64 x 64 when AHE is performed on a 512 x 512 image.

For each of these contextual regions, the histogram of the contained pixels is calcu­
lated. Calculation of the corresponding cumulative histograms results in a gray-level
assignment table that optimizes contrast in each of the contextual regions, essentially
a histogram equalization based on local image data.

To avoid visibility of region boundaries, a bilinear interpolation scheme is used (see
Figure 2).

Applying adaptive histogram equalization on the image in Figure la results in the
image that can be found in Figure 2b. Although the contrast of the relevant structures
in the knee is largely improved, the most striking feature of the image is the back­
ground noise that has become visible. Although one can argue that AHE does what it
is supposed to do — optimal presentation of information present in the image — noise
present in AHE images turns out to be a major drawback of the method.

476 <C> Image Processing

Figure 2. Subdivision and interpolation scheme used with adaptive histogram equalization and a typ­
ical result of AHE. (a) The gray-level assignment at the sample position, indicated by a white dot, is
derived from the gray-value distributions in the surrounding contextual regions. The points A, B, C,
and D form the center of the relevant contextual regions; region-specific gray-level mappings {gA(s),
9b{s), gc{s) and gvis)) are based on the histogram of the pixeis contained. Assuming that the
original pixel intensity at the sample point is s, its new gray value Is calculated by bilinear interpola­
tion of the gray-level mappings that were calculated for each of the surrounding contextual regions:
s' = (1 - y)((l - x)gA{s) + xgsis)) + 2/((l - x)gc{s) + xgois)) where x and y are normal­
ized distances with respect to the point A. At edges and corners, a slightly different interpolation scheme
is used, (b) Result of AHE using 8x8 contextual regions applied on the image in Figure 1a. Although
structures In the knee can be better distinguished, the overall appearance of the image suffers due to
noise enhancement.

0 Contrast Limited Adaptive Histogram Equalization (CLAHE) <>

The noise problem associated with AHE can be reduced by limiting contrast enhance­
ment specifically in homogeneous areas. These areas can be characterized by a high peak
in the histogram associated with the contextual regions since many pixels fall inside the
same gray range. With CLAHE, the slope associated with the gray-level assignment
scheme is limited; this can be accomplished by allowing only a maximum number of
pixels in each of the bins associated with local histograms. After clipping the histogram,
the pixels that were clipped are equally redistributed over the whole histogram to keep
the total histogram count identical (see Figure 3).

The clip limit (or contrast factor) is defined as a multiple of the average histogram
contents. With a low factor, the maximum slope of local histograms will be low and

VIII.5 Contrast Limited Adaptive Histogram Equalization ^ 477

Figure 3. Principle of contrast limiting as used with CLAHE. (a) Histogram of a contextual region con­
taining many background pixels, (b) Calculated cumulative histogram; when used as a gray-level mapping,
many bins are wasted for visualization of background noise, (c) Clipped histogram obtained using a clip
limit of three. Excess pixels are redistributed through the histogram, (d) Cumulative clipped histogram: its
maximum slope (equal to the contrast enhancement obtained) is equal to the clip limit.

therefore result in limited contrast enhancement. A factor of one prohibits contrast
enhancement (giving the original image); redistribution of histogram bin values can be
avoided by using a very high clip limit (one thousand or higher), which is equivalent to
the AHE technique.

Figure 4 shows two examples of contrast enhancement using CLAHE; although the
image at the right was CLAHE processed using a high clip limit, image noise is still
acceptable.

The main advantages of the CLAHE transform as presented in this Gem are the
modest computational requirements, its ease of use (requiring only one parameter: the
clip limit), and its excellent results on most images.

CLAHE does have disadvantages. Since the method is aimed at optimizing contrast,
there is no 1 to 1 relationship between the gray values of the original image and the
CLAHE processed result; consequently, CLAHE images are not suited for quantita­
tive measurements that rely on a physical meaning of image intensity. A more serious
problem are artifacts that sometimes occur when high-intensity gradients are present;
see (Cromartie and Pizer 1991) for an explanation of these artifacts and a possible (but
computationally expensive) solution. A detailed overview of AHE and other histogram
equalization methods can be found in (Gauch 1992).

478 0 Image Processing

Figure 4. Result of CLAHE applied on the image in Figure 1a. (a) CLAHE with clip limit 3. (b) CLAHE
with clip limit 10. Both images were obtained using 8x8 contextuai regions.

0 Implementation 0
Since CLAHE has its roots in medical imaging, the earlier CLAHE implementations
assumed 16-bit image pixels, since medical scanners often generate 12-bit images. This
implementation is a rewrite of a K&R C version written more than five years ago; it is
now Ansi-C as well as C++ compliant and can also process 8-bit images.

For a 512 x 512 image, this implementation of CLAHE requires less than a second
on an HP 9000/720 workstation when 8x8 contextual regions are used.

VIII.5 Contrast Limited Adaptive Histogram Equalization 0 479

/*
* These functions implement contrast limited adaptive histogram equalization.
* The main routine (CLAHE) expects an input image that is stored contiguously in
* memory; the CLAHE output image overwrites the original input image and has the
* same minimum and maximum values (which must be provided by the user).
* This implementation assumes that the X- and Y image resolutions are an integer
* multiple of the X- and Y sizes of the contextual regions. A check on various other
=(= error conditions is performed.
*

* ^define the symbol BYTE-IMAGE to make this implementation suitable for
* 8-bit images. The maximum number of contextual regions can be redefined
* by changing uiMAX-REG.X and/or uiMAX-REG-Y; the use of more than 256
* contextual regions is not recommended.
*

* The code is ANSI-C and is also G-h-k compliant.
*

* Author: Karel Zuiderveld, Computer Vision Research Group,
* Utrecht, The Netherlands (karelQpv.ruu.nl)
*/

#ifdef BYTE_IMAGE
typedef unsigned char kz_pixel_t;
#define uiNR_OF_GREY (256)
#else
typedef unsigned short kz_pixel-t;
define uiNR_OF-GREY (4096)
#endif

Prototype of CLAHE function. Put this in a separate include file.
int CLAHE(kz_pixel_t* pimage, unsigned int uiXRes, unsigned int uiYRes, kz.pixel-t Min,

kz_pixel_t Max, unsigned int uiNrX, unsigned int uiNrY,
unsigned int uiNrBins, float fCliplimit);

Local prototypes
Static void ClipHistogram (unsigned long*, unsigned int, unsigned long);
static void MakeHistogram (kz_pixel_t*, unsigned int, unsigned int, unsigned int,

unsigned long*, unsigned int, kz_pixel_t*);
static void MapHistogram (unsigned long*, kz_pixel_t, kz_pixel_t,

unsigned int, unsigned long);
static void MakeLut (kz_pixel_t*, kz_pixel_t, kz_pixel_t, unsigned int);
static void Interpolate (kz.pixel_t*, int, unsigned long*, unsigned long*,

unsigned long*, unsigned long*, unsigned int, unsigned int, kz.pixel-t*);

/************** Start of actual code **************/
#include <stdlib.h> /* To get prototypes of malloc() and free() */

const unsigned int uiMAX_REG_X = 16; /* max. # contextual regions in x-direction */
const unsigned int uiMAX_REG_Y = 16; /* max. ^ contextual regions in y-direction */

/* for 8 bit-per-pixel images */

/* for 12 bit-per-pixel images (default) */

480 O' Image Processing

/s(c*j|c!|:jKj|!*********H:**=I=******* main function CLAHE ^if***-^******-******/
int CLAHE (kz_pixel_t* pimage, unsigned int uiXRes, unsigned int uiYRes,

kz-pixel-t Min, kz_pixel-t Max, unsigned int uiNrX, unsigned int uiNrY,
unsigned int uiNrBins, float fcliplimit)

/*■ pimage - Pointer to the input/output image
* uiXRes - Image resolution in the X direction
* uiYRes - Image resolution in the Y direction
* Min - Minimum gray-value of input image (also becomes minimum of output image)
=1= Max - Maximum gray-value of input image (also becomes maximum of output image)
* uiNrX - Number of contextial regions in the X direction (min 2, max uiMAX.REG-X)
* uiNrY - Number of contextial regions in the Y direction (min 2, max uiMAX.REG.Y)
* uiNrBins - Number of gray bins for histogram (“dynamic range)
* float fGliplimit - Normalized clip limit (higher values give more contrast)
* The number of "effective” gray levels in the output image is set by uiNrBins; selecting
* a small value (eg. 128) speeds up processing and still produce an output image of
* good quality. The output image will have the same minimum and maximum value as the input
* image. A clip limit smaller than 1 results in standard (non-contrast-limited) A HE.

*/
{

unsigned int uix, uiY; /* counters */
unsigned int uiXSize, uiYSize, uiSubX, uiSubY; /* size of context, reg. and subtmages */
unsigned int uiXL, uiXR, uiYU, uiYB; /* auxiliary variables interpolation routine */
unsigned long ulClipLimit, ulNrPixels;/* elip limit and region pixel count */
kz_pixel_t* pImPointer; /* pointer to image */
kz_pixel_t aLUT [uiNR.OF.GREY] ; /* lookup table used for scaling of input image */
unsigned long* pulHist, *pulMapArray; /* pointer to histogram and mappings*/
unsigned long* pulLU, *pulLB, *pulRU, *pulRB,- /* auxiliary pointers interpolation */

if (uiNrX > uiMAX_REG-X) return -1;
if (uiNrY > uiMAX-REG_Y) return -2;
if (uiXRes % uiNrX) return -3;
if (uiYRes Sc UiNrY) return -4;
if (Max >= uiNR_OF.GREY) return -5;
if (Min >= Max) return -6;
if (UiNrX <211 UiNrY < 2) return -
if (fcliplimit == 1.0) return 0;
if (uiNrBins == 0) uiNrBins = 128;

/* # o/ regions x-direction too large */
/* # of regions y-direction too large */
/* Irresolution no multiple of uiNrX */
/* y-resolution no multiple of uiNrY */
/* maximum too large */
/* minimum equal or larger than maximum */

; / * at least 4 contextual regions required */
/* is OK, immediately returns original image. */
/* default value when not specified */

pulMapArray=(unsigned long *)malloc(sizeof(unsigned long)*uiNrX*uiNrY*uiNrBins);
if (pulMapArray == 0) return -8; /* Not enough memory! (try redueing uiNrBins) */

UiXSize = uiXRes/uiNrX; uiYSize = uiYRes/uiNrY; /* Actual size of contextual regions */
ulNrPixels = (unsigned long)uiXSize * (unsigned long)uiYSize;

if (fcliplimit > 0.0) { /* Galculate actual cliplimit */
UlClipLimit = (unsigned long) (fcliplimit * (uiXSize * uiYSize) / uiNrBins);
UlClipLimit = (ulClipLimit < lUL) ? lUL : ulClipLimit;

else UlClipLimit = 1UL«14; /* Large value, do not clip (AHE) */

VIII.5 Contrast Limited Adaptive Histogram Equaiization 0 481

MakeLut (aLUT, Min, Max, uiNrBins); /* Make lookup table for mapping of gray values */
/Ht Calculate gray-level mappings for each contextual region */
for (uiY = 0, pImPointer = pimage; uiY < uiNrY; uiY++) {

for (uix = 0; uix < uiNrX; uix++, pImPointer += uiXSize) {
pulHist = ScpulMapArray [uiNrBins * (uiY * uiNrX + uiX)];
MakeHistogram(pImPointer,uiXRes,uiXSize,uiYSize,pulHist,uiNrBins,aLUT);
ClipHistogram(pulHist, uiNrBins, ulClipLimit);
MapHistogram(pulHist, Min, Max, uiNrBins, ulNrPixels);

}
pImPointer += (uiYSize - 1) * uiXRes; /* skip lines, set pointer

}

/* Interpolate gray-level mappings to get CLAHE image */
for (pImPointer = pimage, uiY = 0; uiY <= uiNrY; uiY++) {

if (uiY == 0) { /* special case: top row */
uiSubY = uiYSize » 1; uiYU = 0; uiYB = 0;

}
else {

if (uiY == uiNrY) { /* special case: bottom row */
uiSubY = uiYSize » 1; uiYU = uiNrY-1; uiYB = uiYU;

}
else { /* default values */

uiSubY = uiYSize; uiYU = uiY - 1; uiYB = uiYU + 1;
}

}
for (uix = 0; uiX <= uiNrX; uiX++) {

if (uix == 0) { /* special case: left column */
uiSubX = uiXSize » 1; uiXL = 0; uiXR = 0;

}
else {

if (uix == uiNrX) { /* special case: right column
uiSubX = uiXSize >> 1; uiXL = uiNrX - 1; uiXR = uiXL;

}
else { /* default values */

uiSubX = uiXSize; uiXL = uix 1; uiXR = uiXL + 1;
}

}

pulLU = &pulMapArray[uiNrBins * (uiYU * uiNrX + uiXL)];
pulRU = ScpulMapArray [uiNrBins * (uiYU * uiNrX + uiXR)] ;
pulLB = ScpulMapArray [uiNrBins * (uiYB =1= uiNrX + uiXL)] ;
pulRB = ScpulMapArray [uiNrBins * (uiYB * uiNrX + uiXR)] ;
Interpolate(pImPointer,uiXRes,pulLU,pulRU,pulLB,pulRB,uiSubX,uiSubY,aLUT);
pImPointer += uiSubX; /* set pointer on next matrix */

pImPointer (uiSubY - 1) * uiXRes;

free(pulMapArray);
return 0;

/* free space for histograms */
/* return status OK */

482 0 Image Processing

void ClipHistogram (unsigned long* pulHistogram, unsigned int
uiNrGreylevels/ unsigned long ulClipLimit)

/* This function performs clipping of the histogram and redistribution of bins.
* The histogram is clipped and the number of excess pixels is counted. Afterwards
* the excess pixels are equally redistributed across the whole histogram (providing
* the bin count is smaller than the clip limit).

*/
unsigned long* pulBinPointer, *pulEndPointer, *pulHisto;
unsigned long ulNrExcess, ulUpper, ulBinIncr, ulStepSize, i;
long IBinExcess;

ulNrExcess = 0; pulBinPointer - pulHistogram; • ; */
for (i = 0; i < UiNrGreylevels; i+ +) { /* calculate total number of excess pixels */

IBinExcess = (long) pulBinPointer[i] - (long) ulClipLimit;
if (IBinExcess > 0) ulNrExcess += IBinExcess; /* excess in current bin */

};
/* Second part: clip histogram and redistribute excess pixels in each bin */
ulBinIncr = ulNrExcess / uiNrGreylevels; /* average bin increment*
UlUpper = UlClipLimit - ulBinIncr; /* Bins larger than ulUpper set to clip limit */

for (i = 0; i < uiNrGreylevels; i++) { . . j, i- l- ,1,/
if (pulHistogram[i] > ulClipLimit) pulHistogram[i] = ulClipLimit; /* dtp bin /
©1 ss {if (pulHistogram[i] > ulUpper) { /* high bin count */

UlNrExcess -= pulHistogram[i] - ulUpper; pulHistogram[i]=ulClipLimit;

^ low bin count */
else { .UlNrExcess -= ulBinIncr; pulHistogram[i] += ulBinIncr;
}

}
}

while (UlNrExcess) { /* Redistribute remaining excess */
pulEndPointer = &pulHistogram[uiNrGreylevels]; pulHisto = pulHistogram;

while (ulNrExcess && pulHisto < pulEndPointer)
ulStepSize = uiNrGreylevels / ulNrExcess;
if (ulStepSize < 1) ulStepSize = 1;
for (pulBinPointer=pulHisto; pulBinPointer

pulBinPointer += ulStepSize) {
if (*pulBinPointer < ulClipLimit) {

(*pulBinPointer)++; ulNrExcess--;

{

/* stepsize at least 1 */
< pulEndPointer && ulNrExcess;

/* reduce excess */

}
}
pulHisto++; / * restart redistributing on other bin location * /

}
)

VIII.5 Contrast Limited Adaptive Histogram Equaiization 0 483

void MakeHistogram (kz-pixel_t=l= pimage, unsigned int uiXRes,
unsigned int uiSizeX, unsigned int uiSizeY,
unsigned long* pulHistogram,
unsigned int uiNrGreylevels, kz.pixel.t* pLookupTable)

/* This function classifies the gray-levels present in the array image into
* a grey-level histogram. The pLookupTable specifies the relationship
* between the gray-value of the pixel (typically between 0 and 4095) and
* the corresponding bin in the histogram (usually containing only 128 bins).
*/

{
kz_pixel_t* pImagePointer;
unsigned int i;

for (i = 0; i < uiNrGreylevels; i++) pulHistogram[i] = OL; /* clear histogram */

for (i = 0; i < uiSizeY; i++) {
pImagePointer = Splmage[uiSizeX];
while (pimage < pImagePointer) pulHistogram[pLookupTable[*plmage++]]++;
pImagePointer += uiXRes;
pimage = SpImagePointer[-uiSizeX];

}
}
void MapHistogram (unsigned long* pulHistogram, kz.pixel.t Min, kz_pixel_t Max,

unsigned int uiNrGreylevels, unsigned long ulNrOfPixels)
/* This function calculates the equalized lookup table (mapping) by
* cumulating the input histogram. Note: lookup table is rescaled in range [Min. .Max).
*/

{
unsigned int i; unsigned long ulSum = 0;
const float fScale = ((float)(Max - Min)) / ulNrOfPixels;
const unsigned long ulMin = (unsigned long) Min;

for (i = 0; i < uiNrGreylevels; i++) {
ulSum += pulHistogram[i]; pulHistogram[i]=(unsigned long)(ulMin+ulSum*fSoale);
if (pulHistogram[i] > Max) pulHistogram[i] = Max;

}
)

void MakeLut (kz_pixel_t * pLUT, kz_pixel_t Min, kz_pixel_t Max, unsigned int uiNrBins)
/* To speed up histogram clipping, the input image [Min, Max] is scaled down to
* [0,uiNrBins-l]. This function calculates the LUT.
*/

{
int i;
const kz.pixel-t BinSize = (kz.pixel.t) (1 + (Max - Min) / uiNrBins);

for (i = Min; i <= Max; i++) pLUT[i] = (i - Min) / BinSize;
:}

484 0 Image Processing

void Interpolate (kz.pixel-t * pimage, int uiXRes, unsigned long * pulMapLU,
unsigned long * pulMapRU, unsigned long * pulMapLB, unsigned long * pulMapRB,
unsigned int uiXSize, unsigned int uiYSize, kz_pixel-t * pLUT)

/* pimage - pointer to input/output image
* uiXRes - resolution of image in x-direction
* pulMap* - mappings of gray-levels from histograms
* uiXSize - uiXSize of image submatrix
* uiYSize - uiYSize of image submatrix
* pLVT - lookup table containing mapping gray values to bins
* This function calculates the new gray-level assignments of pixels within a submatrix
* of the image with size uiXSize and uiYSize. This is done by a bilinear interpolation
* between four different mappings in order to eliminate boundary artifacts.
* It uses a division; since division is often an expensive operation, I added code to
^ perform a logical shift instead when feasible.
*/

const kz.pixel_t Max = (kz_pixel-t) uiNR_OF_GREY - 1;
const unsigned int uiincr = uiXRes-uiXSize; /* Pointer increment after processing row */
kz_pixel_t GreyValue; unsigned int uiNum = uiXSize=l=uiYSize; /* Normalization factor =1=/

unsigned int uiXCoef, uiYCoef, uiXInvCoef, uiYInvCoef, uiShift - 0,

if (uiNum & (uiNum -1)) /* If uiNum is not a power of two, use division */
for (uiYCoef = 0, uiYInvCoef = uiYSize; uiYCoef < uiYSize;

uiYCoef++, uiYInvCoef--,plmage+=uilncr) {
for (uiXCoef = 0, uiXInvCoef = uiXSize; uiXCoef < uiXSize;

uiXCoef++, uiXInvCoef--) {
GreyValue = pLUT [^pimage] ; /* get histogram bin value */
*plmage++ = (kz.pixel.t) ((uiYInvCoef * (uiXInvCoef^pulMapLU[GreyValue]

+ uiXCoef * pulMapRU[GreyValue])
+ uiYCoef * (uiXInvCoef * pulMapLB[GreyValue]

+ uiXCoef * pulMapRB[GreyValue])) / uiNum);

{

}
} { /* avoid the division and use a right shift instead */

while (uiNum »= 1) uiShift++; /* Calculate Slog of uiNum */
for (uiYCoef = 0, uiYInvCoef = uiYSize; uiYCoef < uiYSize;

uiYCoef++, UiYInvCoef--,plmage+=uilncr) {
for (uiXCoef = 0, uiXInvCoef = uiXSize; uiXCoef < uiXSize;
uiXCoef++, uiXInvCoef--) {
GreyValue = pLUT [=l=plmage] ; /* get histogram bin value */
plmage++ = (kz-pixel-t) ((uiYInvCoef (uiXInvCoef * pulMapLU[GreyValue]

+ uiXCoef * pulMapRU[GreyValue])
+ uiYCoef * (uiXInvCoef * pulMapLB[GreyValue]

+ uiXCoef * pulMapRB[GreyValue])) » uiShift);
}

}
}

VIII.5 Contrast Limited Adaptive Histogram Equaiization 0 485

0 Bibliography 0
(Cromartie and Pizer 1991) R. Cromartie and S.M. Pizer. Edge-afFected context for

adaptive contrast enhancement. In A. C. S. Colchester and D. J. Hawkes, editors,
Proceedings of the Xllth International Meeting on Information Processing in Med­
ical Imaging: Lecture Notes in Computer Science, pages 474-485, Springer-Verlag,
Berlin, 1991.

(Gauch 1992) J. M. Gauch. Investigations of image contrast space defined by varia­
tions on histogram equalization. CVGIP: Graphical Models and Image Processing,
54(4):269-280, July 1992.

(Jain 1989) A. K. Jain. Fundamentals of digital image processing. Prentice Hall, En­
glewood Gliffs, NJ, 1989.

(Pizer et al. 1987) S. M. Pizer, E. P. Amburn, J. D. Austin, R. Cromartie,
A. Geselowitz, B. ter Haar Romeny, J. B. Zimmerman, and K. Zuiderveld. Adap­
tive histogram equalization and its variations. Computer Vision, Graphics, and
Image Processing, 39:355-368, 1987.

(Rosenman et al. 1993) J. Rosenman, C. A. Roe, R. Cromartie, K. E. Muller, and S. M.
Pizer. Portal film enhancement: Technique and clinical utility. Int. J. Radiat.
Oncol. Biol. Physics, pages 333-338, 1993.

